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[1] Taylor’s entrainment equation contains the entrainment
function E that has traditionally been treated heuristically,
as attested by 30 different expressions for E(Ri) available
in the literature. Using a model independent procedure,
we first derive the new relation: E = 2Psh u�3 which
expresses E in terms of Ps, the shear production (of
turbulent kinetic energy) averaged across the interface of
the gravity current whose thickness and mean velocity are
denoted by h and u. Second, using a turbulence model for
the turbulence kinetic energy K and its rate of dissipation
e (K-e model, integrated across the flow), we compute Ps
to express E in terms of the Richardson number Ri and the
density ratio Rr characterizing double-diffusion. Third, we
show that in the local (along the flow) case, the model
reproduces the Ellison and Turner (1959) data while the
non-local case reproduces the data by Princevac et al.
(2005) which are up to ten times larger than the ET data.
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1. Introduction

[2] One of the most important processes in oceanography
is represented by gravity currents whose dynamic depends
critically on the rate of entrainment E of the surrounding
flow [Killworth, 1977, 2001; Price and Baringer, 1994;
Gawarkiewicz and Chapman, 1995; Jiang and Garwood,
1995; Baringer and Price, 1997a, 1997b; Price and Yang,
1998; Hallberg, 2000; Jungclaus and Mellor, 2000; Astraldi
et al., 2001; Send and Basheck, 2001; Özgökmen and
Chassignet, 2002; Girton and Sanford, 2003; Kase et al.,
2003; Özgökmen et al., 2003; Wells and Wettlaufer, 2005;
Wahlin and Cenedese, 2005]. Traditionally, the entrainment
E has been treated phenomenologically as indicated by the
30 heuristic expressions for E(Ri) cited by Fernando
[1991]. Laboratory data by Ellison and Turner [1959,
hereinafter referred to as ET] were represented by an
empirical relation E = E(Ri) [Turner, 1986] which has been
widely used. More recently, Dallimore et al. [2001] have
presented an heuristic formula for E based on physical
considerations of the processes that contribute to E with

particular emphasis on the role of bottom friction. The
conclusion is that Turner’s and Dallimore et al.’s models
(with a proper choice of the friction coefficient), can
provide a reasonable, if not fully satisfactory, representation
of a large variety of data.
[3] Quite unexpected and challenging have been the

recent data by Princevac et al. [2005] who measured E in
atmospheric (katabatic) flows. Turner’s formula was found
to severely underestimate E: specifically, at Ri = 0.2 and 0.5,
the new E is five and ten times larger than the ET value. In
addition, the new E does not vanish at Ri = 0.8, as implied by
ET, but it becomes constant ’0.05 up to Ri = 1.6.
[4] Using a turbulence model, we derive an expression for

E that is able to reproduce the data of ET and those of
Princevac et al. We find that the first data correspond to a
local regime while the latter correspond to a non-local
regime.

2. Derivation of the Entrainment
Equation and of E

[5] Let us denote with s and z the coordinates along and
across a gravity current descending along the s-direction
which has a slope a; the thickness of the descending plume
in the z-direction is denoted by h [see, e.g., Özgökmen and
Chassignet, 2002, Figure 4]. The total plume velocity U is
decomposed into a bulk (mean) and a fluctuating part, U =
u + u0. Assuming that the bulk flow if homogeneous in the
y-direction, we have v = 0, @yA = 0, where A represents any
bulk field. In addition, one has juj � jwj, j@zAj � j@sAj.
Neglecting the contribution of the buoyancy force due to
the variation of the plume’s height, and averaging the
Navier-Stokes equation over the scale of the local turbu-
lence, the dynamic equation for the bulk velocity within the
Boussinesq approximation reads:

@tuþ @su
2 þ @z uwð Þ ¼ � @zt13 þ g0 sinaþ n@zzu ð1aÞ

where tij = u0iu
0
j, g

0 = grp
�1 (re � rp) are the Reynolds

stresses and the reduced gravity. Averaging (1a) over z via
the definition [Turner, 1986] A = h�1

R
Adz, the last term in

the lhs and the first term in the rhs of (1a) vanish. Changing
the order of integration and differentiation in the remaining
terms in the lhs of (1a) and employing the top-hat approx-
imation the steady state version of (1a) gives [Turner, 1973,
equation 6.2.6]:

@s hu2
� �

¼ g0h sina� u2
*

ð1bÞ

where u
*

= [�n@zu(0)]
1/2 is the friction velocity. Next,

from (1a) we derive the dynamic equation for the mean
kinetic energy K = u2/2:

@tK þ @s uK
� �

þ @z wK
� �

¼ �u@zt13 þ ug0sinaþ nu@zzu ð1cÞ
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To average (1c), consider the first term in the rhs of (1c). We
divide the region of integration into two parts separated by
the point z0 where @zu(z) = 0. In almost the entire region
below z0, we have t13 = �u

*
2 while above z0 the function

t13(z) changes sign and thus t13(z0) = 0. It follows that:

Zz0
0

dzu@zt13 ¼ �
Zz0
0

dzt13@z u¼ uu2
*

ð1dÞ

while the integration over the upper part yields:

Z1

z0

dzu@zt13 ¼
Z1

z0

dz Ps zð Þ � hPs ð1eÞ

where Ps is the shear interface production. Assuming a
steady state, averaging (1c) in the top-hat approximation
and neglecting the viscous terms which do not greatly affect
the large scale flow, we obtain:

@s
1

2
hu3

� �
¼ �hPs þ uhg0sina � uu2

*
ð1f Þ

Eliminating g0 between (1f) and (1b), we obtain:

@s huð Þ ¼ Eu; E ¼ 2hPsu
�3 ð1gÞ

We notice that u
*
2 = CDu

2 has canceled out in relations (1g).
This is due to the fact that in integrating the Reynolds
stresses, we assumed that below the inversion point of the
mean velocity profile (defined as the point where @zu(z0) =
0, see Figure 8b of Dallimore et al. and Figure 3 of
Princevac et al.), we have (1d) which then cancels the
analogous term in equation (1b). Even though the produc-
tion due to bottom friction is larger than the one in the
region z > z0 just considered (Figure 16 of Dallimore et al.),
in the present formulation such a term cancels out, a
conclusion that can be directly checked. Using Figure 16 of
Dallimore et al., the production in the z > z0 region can be
computed to be hPs = 7*10�7 m3 s�3 and using their Table 1
the mean velocity turns out to be u = 0.21 ms�1. Inserting
these values into the second of (1g), the present model
predicts that E = 1.5*10�4 which compares well with the
value E = 1.4*10�4 of Dallimore et al. [2001], thus
confirming the cancellation of the friction terms, and
consequently the validity of equations (1d, 1g).
[6] In conclusion, we have derived an expression for E

which is model independent since no turbulence model was
used. Below we show how E depends on the large scale
parameters Ri and Rr.

3. Computation of E Versus Ri and RR

[7] The Reynolds Stress Model (RSM [Canuto et al.,
2001, hereinafter referred to as I; Canuto et al., 2002,
hereinafter referred to as II]) yields the following results
for Ps, the rate of production of turbulent kinetic energy by
shear:

Ps ¼ KmS2 Ka ¼ 2K2e�1Sa Ri;Rr
� �

ð2aÞ

where Ka is the diffusivity of an arbitrary field (a =
momentum, heat, salt), K is the turbulent kinetic energy, e

its rate of dissipation while the Sa
0 s are dimensionless

structure functions of Ri and Rr discussed and plotted in I-II
(see section 5). Furthermore, Ri = N2S�2 is the Richardson
number, N (N2 = �gr0

�1@r/@z) is the Brunt-Väisäla
frequency, S is the mean shear and Rr is the density ratio
Rr = (b@S/@z)(a@T/@z)�1. To evaluate Ps, one needs K and
e for which we adopt the K-e model (D/Dt = @t + u . r; t =
2K/e; c1,2 = 2.88, 3.8):

DtK þ @iKui ¼ P� e ð2bÞ

Dteþ @ieui ¼ c1t�1P � c2et�1 ð2cÞ

where P is the total production due to shear, temperature and
salinity given by (I, II):

P ¼ Ps þ PT þ PS ¼ KmS2 � KrN
2 ¼ Ps 1� RiSrS

�1
m

� �
� Psj

ð2dÞ

and Kr is the ‘‘mass diffusivity’’ given in terms of the heat-
salt diffusivities Kh,s:

Kr ¼ Kh � RrKs

� �
1� Rr
� ��1 ð2eÞ

When we average equations (2b, 2c) across the flow, the
terms @z give zero contribution while for the along-the-flow
non-local terms, we suggest the closures:

@s heuð Þ ¼ ceeK1=2; @s huK
� �

¼ 21=2aK3=2; u@s hKð Þ ¼ buK

ð2f Þ

where for simplicity we have used the notation K = h�1R
K(z)dz, e = h�1

R
e(z)dz and where the coefficients a, b, ce

will be discussed later (section 7). Using the variables y2 �
heu�3 and t = 2K/e, we then have:

e�1th�1@s heuð Þ ¼ 2�1=2cey tSð Þ3=2 ð2gÞ

x � e�1h�1 @s huK
� �

þ u@s hKð Þ
� �

¼ 1

2
ay tSð Þ3=2þ 1

2
b tSð Þ

ð2hÞ

The stationary solution of the K-e model, together with (1g)
and (2g, 2h), then yields:

E ¼ tSð Þ2 Smy2; K ¼ 1

2
u2y2tS; y2 � he u�3; Ka ¼ 1

2
uhE

ð3aÞ

1

2
tSð Þ2¼ 1þ xð Þ jSmð Þ�1;

21=2y ¼ c1c
�1
e tSð Þ1=2 jSm� 2c2c

�1
1 tSð Þ�2

h i ð3bÞ

To solve equation (3b), we need the structure functions
Sm,h(Ri, Rr, tS) which are discussed in section 5. The
procedure is therefore as follows. Using (2h) in (3b) with
the Sm,h(Ri, Rr, tS) discussed below, one solves for tS vs.
(Ri, Rr) which is then used in the first of (3a) to obtain the
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desired relation E(Ri, Rr). Finally, the local-case P = e
corresponds to x = 0 while the non-local case corresponds to
x 6¼ 0.

4. Double Diffusion

[8] To account for DD processes, one must use the form
of Sm,h(Ri, Rr, tS) given by equations (13–15) of II. At
high shear values, corresponding to small Ri, many data
have shown [e.g., Linden, 1971] that heat and salt diffusiv-
ities are the same and thus it follows from (2e) the mass
diffusivity is the same as that of heat and salt. The resulting
E must therefore be essentially the same as in the case
without DD. At higher Ri, when shear subsides, mixing
weakens and DD processes may play a role. We exhibit this
behavior in the local case, Figure 1.

5. The Structure Functions SA

[9] There is a long and interesting history about the
dimensionless structure functions Sa(Ri, Rr, tS) which that
dates back to the original Mellor-Yamada (MY) model and
which has been recently discussed in detail [Cheng et al.,
2002, section 6]. First, no model included the dependence
on Rr until model II. Second, all models exhibited an
inverse dependence of Sm on Ri, as expected in stably
stratified flows. However, the MY-type models cut off
mixing too early leading to shallow mixed layers [Martin,
1985]. The turbulence model developed in II (see Figures 4
and 5 of II) included a more physical representation of
several aspects of the RSM, in particular a better represen-
tation of the velocity and temperature pressure correlations.
In turn, that implied a Sa vs. Ri relationship that allowed
mixing to exist much longer, thus yielding more realistic
mixed layer depths [Burchard and Bolding, 2001]. In
addition, Burchard and Deleersnijder [2001] showed that
the new Sa are more stable and more well behaved than
previous ones. In the context of DD processes, one expects
that under the transformation Rr ! 1/Rr, the structure
functions Sh and Ss exchange their roles. It was verified
that this is indeed the case. The full expression for the
functions Sa (Ri, Rr, tS) is given in equations 13–15 of II.
[10] Since the general effect of DD processes on the

entrainment E is exhibited in Figure 1 for the local case, in

the more complex non-local case we turn off the DD
processes contribution. In that case, the structure function
Sm(Ri, tS) is given by equations (17–18) of Cheng et al.
[2002]:

Sm Ri; tSð Þ ¼ s0 þ s1Riþ s2ð Þs½ �

� 1þ d1Riþ d2ð Þsþ d5 þ d4Riþ d3Ri
2

� �
s2

� ��1

ð3cÞ

where s � (tS)2. The constants sn and dn are given in
Table 2 of Cheng et al. [2002].

6. Bottom Friction

[11] Although we have presented arguments to justify the
cancellation of bottom friction terms in (1g), one cannot
exclude a residual contribution as a source of turbulent
kinetic energy of the form:

P
*
¼C

*
u3
*
h�1 C

*
� 1 ð3dÞ

which would change the total production (2d) to:

P ¼ Psjþ C
*
C
3=2
D h�1u3 ¼ Psj 1þ pE�1

� �
; p ¼ 2C

*
C
3=2
D j�1

ð3eÞ

which leads to a change in the previous expressions of j
into j(1 + pE�1). It follows that bottom friction plays a role
when p is not too small which occurs when:

C
3=2
D � E ð3f Þ

With typical values of CD = (3–5)*10�3, we obtain E =
(1.5–3.5)*10�4. We conclude that bottom friction con-
tributes to the entrainment in the oceanic regions character-
ized by Froude’s number of order unity, as one can see from
the plot of E vs Fr in Figure 8 of Wells and Wettlaufer
[2005] and in Figure 2 of Wahlin and Cenedese [2005].

7. Local Versus Non-Local Models

[12] A local (along the flow) model corresponds to a =
b = 0 in equation (2h) and thus x = 0 in which limit,
equation (3b) gives:

tSð Þ2Sm ¼ 2j�1 y2 � j3=2S3=2m ð4aÞ

equations (3a) and (2a) imply that the entrainment E, the
turbulent kinetic energy K, the dissipation e and the
momentum diffusivity Km are then given by:

E � S3=2m ; K � 1

2
u2Sm; e � h�1u3S3=2m ; Km � huS3=2m ð4bÞ

Since Sm vanish as Ri approaches unity, all the variables in
(4b) vanish as Ri ! 1, as shown in Figure 1 where we also
plot Turner’s relation:

E Rið Þ ¼ 0:08� 0:1Rið Þ 1þ 5Rið Þ�1 ð4cÞ

Dallimore et al. [2001] have suggested a relation E(Ri) that
depends on the drag coefficient CD and in their Figure 10

Figure 1. The entrainment function E vs. Ri for the local
case. The dashed line corresponds to the Turner’s model,
equation 4c. The solid curves correspond to different values
of the density ratio. Without double diffusion, correspond-
ing to Rr = 0, (or 1), the function E is very close to the
Turner’s curve.
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the authors present a variety of data of E vs.Ri for which
their relation gives a reasonable fit with CD = (5� 15)*10�3.
Some considerations are in order. equation (4c) depends
only on Ri since the experiment by Ellison and Turner were
carried out at Rr = 0. It implies that when Ri > 0.8, the
entrainment E vanishes. The new model suggests that when
shear mixing becomes negligible at Ri = O(1), either salt-
fingering (0.7 � Rr � 1) and/or diffusive convection (Rr >
1) may become operative and yield a non-zero entrainment.
Whether this prediction is correct or not remains to be seen
(when shear is large corresponding to a small Ri, DD
processes are not expected to be important and in fact the
curves for different Rr become indistinguishable from the
ET case, Figure 1). Several other empirical relations of E
vs.Ri have been proposed since 1969 and a list of 30 of
them is given by Fernando [1991]. As one can see, our
local model reproduces well the Ellison-Turner data.
[13] In the Princevac et al. [2005] experimental set up,

the breaking action by entrainment and drag is much larger
than the accelerating force due to reduced buoyancy (the g0

term in 1b) and this implies a decrease of all turbulent
properties along the flow’s motion. For this reason, we took
all @s in (2b, 2c) to be negative and as a result, the
coefficients a,b,ce in equations (2g, 2h) were taken to be
negative. In Figure 2 we present the non-local model results
(without double diffusion). The Princevac et al. [2005] data,
with the corresponding error bars, are reproduced rather
well. To highlight the large difference with the new data, we
have added the ET data (dotted line).

8. Conclusions

[14] Although it has long been recognized that the
instabilities occurring at the plume’s interface is the physical
cause of local mixing leading to entrainment, we believe
that this work provides the first model independent relation
between E and the rate of interface shear production,
equation (1g).
[15] Using K-e turbulence model (averaged across the

flow), we computed E in both local and non-local cases (in
the along the flow direction). We show that the ET data
(Turner’s [1986] relation) are well reproduced by the local
model, while the new data by Princevac et al. [2005] are

reproduced by the non-local model. Thus, the same model
can explain data that are quite different since the Princevac
et al. data yield an entrainment E which is up to an order of
magnitude larger than the ET data.
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